
SUMMARY
The study aims to predict the cumulative egg production of Japanese quails’ by using linear regression, linear piecewise regres-
sion, and multivariate adaptive regression splines algorithms including age at sexual maturity, weight at sexual maturity, average
weight of the first ten eggs, and partial-egg records (20, 30, 40, 60, 80, 100, and 150 d partial-egg records). All the raw data were
acquired from a total of 128 female quails. To compare prediction methods, the fit criterions of 15 different models were exam-
ined, moreover the models were compared with the most common criterions.
All prediction methods showed similar results, when the 40, 60, and 80 d partial-egg records included as independent variables
in the models. Although the linear regression and the MARS algorithms inferred satisfying performance with 100 and 150 d of
partial-egg records, the linear piecewise regression models gave a worse prophesying performance than others did. In conclusion,
as an early (indirect) selection criterion, partial-egg records from d 100 can be successfully included as independent variable into
the linear regression and MARS models to predict cumulative egg production.
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INTRODUCTION

Japanese quail is described as a model animal, which has some
advantages, such as easy to raise, reach to sexual maturity at an
earlier age, highly adaptable to environmental conditions, short-
er generation interval, need to less floor space per bird, allow
to the effective selection, low-cost egg production, and resist
to the diseases1,2,3. 
Besides the meat production, quails are used in egg produc-
tion, commonly and effectively4. In last years, the importance
of quail production has been rising to meet increasing demands
for eggs in the poultry industry3. 
As mentioned above, earlier puberty and shorter generation in-
terval cause to evaluate them as a proper breeding material5. 
As in most reproductive traits, egg production is mostly af-
fected by environmental factors rather than genotypic ones
(i.e. relatively low heritability). Therefore, their highly adap-
tive natures to the environmental challenges cause them to
lay more eggs6. 
As in other poultry species, egg production is affected by a se-
ries of factors, such as feed intake, feed conversion, diet com-
position, floor space allowance, flock age, lightening, house tem-
perature and relative humidity, health condition, and geno-
type7,8. In this context, to predict egg production in an earlier
age is crucial for breeders, because of the egg production is

geared towards to large-scale production of eggs for profit max-
imization and human consumption9. Along the reproductive
life cycle, all of these challenging factors can affect both qual-
ity and quantity of the egg production. 
There are voluminous research articles on egg production, egg
weight, internal and external egg quality traits. Modelling the
egg production curve has a complexity due to a typical over-
all performance curve is characterized by non-linear proba-
bilities and unpredictable effectual factors (variables) on the
reproductive performance (especially in house conditions that
are not fully controlled). Since both pre- and post-sexual ma-
turity processes span a wide range of time, ambiguities in many
effectual factors make the egg-production curve non-linear in
nature9. 
The random regression model (RRM) is determined as the best-
fitted model for partial egg production records10. While the non-
linear models (such as gamma, McNally, McMillan, Adams-Bell,
compartmental, modified compartmental, logistic-curvilinear,
Gloor, Lokhorst, and Narushin-Takma) are used, some re-
searchers11 reported that, as a multiphasic function, the seg-
mented polynomial function could be used to estimate indi-
vidual egg production and persistency. Some researchers12 pre-
dicted the hen-day egg production rates by using nonlinear re-
gression models (i.e. gamma, McNally, Adams-Bell and mod-
ified compartment models). In another research13, individual
cumulative egg production was predicted by a multiphasic func-
tion, which is developed to express the time in terms of cu-
mulative egg number. Some internal egg quality traits were pre-
dicted by using principle component regression analysis14. Ge-
netic parameters for egg weight, egg production and age at first
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oviposition were estimated by using Bayesian procedures, which
uses Gibbs sampling15. In another study, researchers16 estimated
the genetic variance components of some egg production re-
lated traits (i.e. age and live weight at first oviposited egg, egg
weight, partial and cumulative egg yield) by using a diverse of
estimation methods (i.e. REML, Gibbs sampling, maximum
likelihood and MIVQUE).
As we summarized above, a plenty of prediction methods were
used in previous researches, but there is no report on linear
piecewise regression (LPR) and multivariate adaptive regres-
sion splines (MARS). Therefore, the intent of this study is to
investigate both methods to predict cumulative egg yield by us-
ing some parameters, such as age and live weight at first oviposit-
ed egg, first ten egg weight mean, and partial-egg records (i.e.
cumulative egg numbers at 20, 30, 40, 60, 80, 100 and 150 d of
laying period).

MATERIALS AND METHODS 

Materials
In this study, a kind of data mining was carried out by using
the performance data previously recorded in the Faculty of Agri-
culture poultry houses (Isparta province of Turkey). The ex-
perimental birds from which the data were acquired were re-
produced from a wild type feathered, unselected, randomly mat-
ed (in group cages) breeder Japanese quail core flock. Day old
chicks were emerged from daily collected and a week stored eggs.
They were kept in electric-heated tier brooders until 4 weeks
of age. Standard raising procedures were followed at this pe-
riod. After sexing based on distinctive feather coloration (i.e.
sexual dichromatism), a total of 128 female quails were wing-
numbered and placed into individual cages. Two of them died
during data collecting, and therefore excluded. Daily eggs were
recorded until 210 d of age. All the quails were fed ad libitum
with a commercial cage layer diet (17% CP and 2700 kcal/kg
ME). They were daily exposed to 16:8 h hemeral lighting regime.
Age and live weights were measured and recorded when they
oviposited their first eggs. First ten eggs of each quail were
weighed at 16.00 pm (same day) by a 0.01 g sensitive electronic
scale. Clutch and pause lengths were calculated and itemized
by using daily egg records in an excel sheet. As guess, cumu-
lative egg yield is sum of total clutches.

Methods
As independent variables, first ten egg weight (FTEW), age and
live weight at first oviposition (AFE and WFE, respectively), and
as models, linear regression (LRM), linear piecewise regression
(LPR) and MARS algorithms were used to predict cumulative
egg yield.

Linear Regression Model (LRM)
Linear regression analysis is a statistical model which offers an
explanatory linear prediction equation to be able to elucidate
(less or more) some of the dependent variable, and it mathe-
matically expresses the causal link between dependent and in-
dependent variables (aka response and predictors respective-
ly). In other words, independent variable(s) can be a function
of the dependent variable17. In linear regression analysis, the
data should have some assumptions such as normal distribu-
tion, constant variance (homoscedasticity), collinearity, and in-
dependence of the residuals18. The mathematical model of the

linear regression, which denotes the mean across change in de-
pendent variable by predictor value’s change, is given below in
Equation 119. 

(1)

Where,
Y is prediction of the dependent variable,
βo is the regression coefficient,
βj is the slope of the jth part, 
ε is the error term

Linear Piecewise Regression Model
(LPR)
LPR is also known as segmented regression or broken-stick re-
gression, and this regression analysis can be applied in which
the predictor is subdivided into intervals and a separate line
segment is fit to each interval. It is also useful when the pre-
dictors clustered into different groups, exhibit different rela-
tionships between the variables in these regions. The bound-
aries between the segments are called as breakpoints, and they
can be important to make decision.
Instead of using a single complex polynomial function of the
equation divides each piece into a finite number of equal pieces
with breakpoints at predetermined locations where a function
will fit. The statistical model of LPR consisting of k pieces is
given below in Equation 2.

(2)

Where,
Y is the prediction of the dependent variable,
βo is the regression constant
βj is the slope of the jth part,
Δj is the slope change between jth and j+1th part,
I(X − Δj) is the breakpoint, if X ≥ Δj then I=1; if X < Δj then
I=0
ε is the error term

Multivariate Adaptive Regression
Splines (MARS)
MARS is a flexible data mining algorithm, which is an-
nounced by Friedman20, enabling to high precision predictions.
MARS is a nonlinear regression method that creates different
regression coefficients for different interval values of the in-
dependent variables that are important in the regression
model. The MARS algorithm can be presumed as a generalized
iterative separation method and stepwise linear regression in
terms of creating the regression model. The MARS uses ap-
propriate techniques to linearize non-linear relationships be-
tween dependent and independent variables21. The most
prominent disadvantage of the MARS algorithm is that it is ad-
versely affected by the multi-collinearity between the inde-
pendent variables, and in this context, reliability of the mod-
el depends on its generalization ability22. The statistical mod-
el of the MARS algorithm is given in Equation 3.

(3)
Where,
Y is the prediction of the dependent variable,
βo is the regression constant,
βm is the coefficient of the basis function in which estimating
equation,

is the basis function
v(k,m) is the indice of the independent variable used in the mth

component of the kth factor,
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Κm is the parameter that limits the order of interaction in the
MARS

Model Goodness of Fit Criteria
Evaluation of the quality of the estimation models, which are
created amongst the dependent and independent variable(s)
is executed in line with the model goodness of fit criteria23. Al-
beit fifteen different model performance evaluations are ex-
amined in current study, herein only the outstanding ones are
given in Equations 5 to 15.

1. Akaike information criterion,    (4)

2. The root mean square error, RMSE = (5)

3. The relative root mean square error,  (6)

rRMSE =

4. Mean error, ME = (7)

5. Mean absolute deviation, MAD = (8)

6. Standard deviation error, SDratio = (9)

7. Performance indices, PI = (10)

8. Relative approximate error, RAE = (11)

9. Mean absolute percentage error, (12)

MAPE =       

10. Pearson correlation coefficient between predictions  (13)

and independent variable, 

11. Determination coefficient, (14)

Where,
n is the number of observations,
k is the number of model parameters (selected terms),
yj is the ith independent variable,
yjp is the prediction of the ith independent variable,
Sm is the standard deviation of the model error terms,
Sd is the standard deviation of the independent variable,
Cov(yi, yip) is the covariance between predictions and inde-
pendent variables,
Syi is the standard deviation of the dependent variable,
Syip is the standard deviation of the predicted values. 

A model should have following conditions in order to meet
goodness of the prediction. While the model goodness-of-fit
measures RMSE, RRMSE, RAE, CV, MRAE, MAPE and
MAD are expected to be close to zero, SDR is expected to be
less than 0.10. 
On the other hand, while the adjusted coefficients of de-
termination should be close to 1, the Pearson correlation co-
efficient amongst the actual and predicted values should be
close to 124. 
In this study, the linear regression and the MARS algorithms
were executed by “earth” and “ehaGoF” packages of the R Stu-
dio software25,26,27. 
The linear piecewise regression was performed by using Sta-
tistica (v12) software.

RESULTS AND DISCUSSION 

Some descriptive statistics of AFE, WFE, FTEW, partial-egg
record (PER, at 20, 30, 40, 60, 80, 100, 150 d of laying period)
and cumulative egg production (CEP, until 210 d of age) traits
were given in Table 1.
The parameters of the seven diverse LRM to predict egg yield,
which uses AFE, WFE, FTEW and PERi (partial egg record at
ith age), were given in Table 2.
A continuous decrement in regression constant (β0) was ob-
served, when the partial-egg record increased (i.e. as approaching
to more realistic egg yield data). As general, in the context of
earlier partial records, although the WFE parameter positive-
ly contributed to the egg yield, but same parameter seemed to
cause less cumulative egg yield in the model of at 150 d of pro-
ductive life. It can be interpreted that the last exceptional sta-
tus is more realistic. Because it is well known that the net ef-
fects of genetic increases in growth rate or juvenile (and/or pu-
bertal maturity) body weight on avian reproduction are neg-
ative28,29,30. Some of these effects appear to be positive, but it ap-
pears that physiological imbalances nullify any favorable con-
sequences. While the overall mean egg weight has a positive ge-
netic correlation with the body mass, especially in meat type
poultry species, responses to selection and genetic correlations
denote that a negative correlation seem to be existed between
juvenile body mass and normal egg production29,30. Although

PER20 143.30 + 0.03 - 0.21 - 1.35 + 1.01

PER30 132.80 + 0.03 - 0.18 - 1.18 + 0.96

PER40 120.50 + 0.03 - 0.13 - 1.23 + 1.01

PER60 92.30 + 0.04 - 0.07 - 1.10 + 1.11

PER80 55.90 + 0.03 + 0.06 - 0.92 + 1.27

PER100 33.90 + 0.02 + 0.08 - 0.54 + 1.23

PER150 19.80 - 0.01 - 0.03 - 0.12 + 0.99

Table 2 - Parameters of LRM which used to estimate egg pro-
duction.

Models β0 WFE AFE FTEW PER(i)

WFE, weight at first oviposition; AFE, age at first oviposition; FTEW, first ten egg
weight; PERi, partial-egg record on ith d.

WFE 128 188.60 316.30 255.74±2.50 28.24

AFE 128 41.00 65.00 47.88±0.47 5.30

FTEW 128 8.69 14.93 11.29±0.09 1.06

PER20 128 0.00 19.00 11.29±0.41 4.65

PER30 128 6.00 28.00 20.12±0.46 5.23

PER40 128 13.00 37.00 29.01±0.49 5.54

PER60 128 20.00 56.00 46.54±0.56 6.32

PER80 128 39.00 75.00 64.34±0.61 6.93

PER100 128 46.00 94.00 81.63±0.72 8.13

PER150 128 62.00 137.00 122.54±0.99 11.14

CEP 128 73.00 154.00 137.08±1.04 11.79

Table 1 - Some descriptive statistics of dependent and inde-
pendent variables.

Variable N Min Max Mean±SE Std Dev

WFE, weight at first oviposition; AFE, age at first oviposition; FTEW, first ten egg
weight; PERi, partial-egg record on ith d; CEP, cumulative egg production.
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it seems to be contradicted, but there are some reasonable ex-
planations (e.g. increased incidence of abnormal eggs, such as
double-yolked, extra-calcified shelled, compress- or slab-
sided, internal laid eggs etc. and progressive regression of de-
veloping follicles and/or double follicle hierarchy) to clarify “in-
creased ova production” versus ‘reduced egg production’ im-
balance31. After all, above-mentioned exceptional and the
longest partial-egg record interval has more data for the cu-
mulative egg number (also note that the increments in partial-
egg records are asymmetric), therefore why individuals with
high WFE produce fewer eggs can be attributed to the num-
ber of abnormal eggs that increase by aging31. Herein it can be
discussed that, whether abnormally oviposited eggs, leastways
detectable and tenable ones can be included to the clutches to
more accurate predictions, and/or it should also be considered
that which partial-egg record is more optimal to reveal more
realistic overall performance prediction. At this point, we also
highlight that, in the multiphasic approach, total egg produc-
tion was determined by not only sum of total clutches, but also
by including even non-captured yolks by infundibulum just fol-
lowing ovulation (these internally laid eggs were included to
the total egg production phase by using an assumption) 32.
When the AFE parameters are elaborated, it was revealed that
only two partial egg records (PER80 and PER100) had a positive
effect on CEP, on the other hand, in both earlier and later par-
tial records had a negative effect on the same trait. This reveal
can be interpreted as follows: While earlier partial records have
no sufficient data to predict cumulative reproductive per-
formance32, some causes of the egg abnormalities, such as shell
defects and misshaped (due to age-related uterus/shell gland
fatigue), increased incidence of the double-yolked eggs etc., oc-
cur in later periods more frequently31. Advanced age related is-
sues decrease either saleable or hatching egg numbers.
All of the parameters of FTEW had a reducing effect on CEP. It
is well known that the mean egg weight is influenced by a series

of factors such as, hen body weight, lighting regime, health sta-
tus, ambient temperature, nutritional factors, flock age, genotype
etc9. Rather than table egg production, the FTEW foretells how far
to reach optimum hatching (suitable for setting) egg weight in
breeder flocks33. As it was also summarized by several re-
searchers24,29,30 that about existence of the genetic correlations in-
volving sexual maturity, egg production, and egg weight, it can be
briefed that heavier individuals produce lesser but heavier eggs be-
cause of both genetic and non-genetic associations, in general.
All of the partial egg records had an augmenting effect on CEP.
This is an expected consequence, because wherever the partial-
record interval is considered, all the partial-records are an in-
tegral part of the overall reproductive performance.
Model goodness of fit criterions of the LRM, which are used
to predict egg production, are given in Table 3. While the AFE,
WFE and FTEW are included into the prediction models as con-
stant independent variables, model differences are due only to
the partial egg production records.
In general, results can be interpreted that the RMSE, RRMSE,
RAE, CV, MRAE, MAPE, MAD, AIC, and CAIC criterions grad-
ually approached to zero as the partial-records’ range prolonged
(i.e. approaching to full record). Looking at the proportion of
the variation in the dependent variable that is predictable from
the independent variables, while the adjusted coefficient of de-
termination is 0.203 in the PER20 model, it raises up to 0.886 in
the PER150 model (from least to most comprehensive partial-
record, respectively). It can be concluded that the overall egg pro-
duction could be predicted by linear regression from day 100.
The reproductive cycle in domesticated species with high-lay rat-
ing (e.g. gallus domesticus, coturnix japonica) is multiphasic13,32.
When the layer flocks commence egg production, there is a slow
increase in lay-rate at first, but then reaches to the peak with an
exponential increase. This first phase is characterized by a sharp
rise. The second and the most steady phase continues along the
peak where the lay-rate is over ninety percent (peak lay-rate can

RMSE 10.40 10.30 10.04 9.25 7.89 6.32 3.93

RRMSE 7.59 7.51 7.32 6.75 5.76 4.61 2.87

SDR 0.89 0.88 0.86 0.79 0.67 0.54 0.34

CV 7.62 7.54 7.35 6.77 5.78 4.63 2.88

PC 0.47 0.48 0.52 0.62 0.74 0.84 0.94

PI 5.18 5.07 4.82 4.17 3.31 2.50 1.48

ME 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RAE 0.01 0.01 0.01 0.01 0.00 0.00 0.00

MRAE 0.01 0.01 0.01 0.01 0.01 0.00 0.00

MAPE 5.56 5.52 5.28 4.98 4.40 3.67 2.11

MAD 6.85 6.79 6.47 6.13 5.48 4.72 2.84

R2 0.22 0.23 0.27 0.38 0.55 0.71 0.89

Adj-R2 0.20 0.22 0.26 0. 370 0.54 0.71 0.89

AIC 603.53 600.93 594.44 573.38 532.80 476.04 354.32

CAIC 603.63 601.02 594.54 573.48 532.90 476.13 354.42

Table 3 - Model goodness of fit results of LRM.

Model goodness of fit criterion PER20 PER30 PER40 PER60 PER80 PER100 PER150

PERi, partial-egg record on ith d; RMSE, root mean square error; RRMSE, relative root mean square error; SDR, standard deviation ratio; CV, coefficient of varia-
tion; PC, Pearson’s correlation coefficients; PI, performance index; ME, mean error; RAE, relative approximation error; MRAE,  mean relative approximation error;
MAPE, mean absolute percentage error; MAD, mean absolute deviation; R2, coefficient of determination; Adj-R2, adjusted coefficient of determination; AIC, Akaike’s
information criterion; CAIC, corrected Akaike’s information criterion.
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be revised a bit for different species or according to the raising
goals in-species). Lastly, lay-rate starts to decrease slowly in the
third phase until the onset of molting. This three-phased re-
productive curve (egg production versus time curve) is also
known as the generic egg-laying pattern9,13. Above-mentioned
influencing factors can change the course of the curve, thus the
CEP. Earlier and limited partial-egg records (insufficient data)
cannot reflect the overall performance, and therefore, power of
the prediction can be unsatisfactory.
The LPR model consists of combining more than one LRM.
The data is cut from a proper breakpoint and two different LRM
are created to cover the previous and the next breakpoint. Ac-
cordingly, there are two different LRM for each egg production
prediction. The parameters of the LPR models, which are used
to predict egg production, are given in Table 4.
While the partial-records increase, the breakpoints decrease,
except for a limited increase in 150 d partial record. When all
models were evaluated together, it is determined that, although
the regression constants, WFE, AFE and FTEW independent
variables positively or negatively contributed to egg produc-

tion, on the other hand partial-records always contributed pos-
itively. As we discussed above, all of the partial-records are an
integral part of the overall reproductive performance.
The model goodness of fit criterions of the LPR models,
which are used to predict CEP of the Japanese quails, are giv-
en in Table 5.
It was ascertained that the RMSE, RRMSE, RAE, CV, MRAE,
MAPE, MAD, AIC, and CAIC criterions diminished when the
partial-records prolonged. While a 43.9 percent of the variance
(adjusted coefficient of variation) in total egg production can
be explained by 30 d partial-egg record, an unexpected decrease
is observed in both 40 and 60 d partial-egg records. Besides,
only 64.10 % of the overall variance for same dependent vari-
able could be explained by 150 d partial-record (i.e. in the most
ranged and the closest one to cumulative record). The non-lin-
ear nature of the typical egg production curves can compel us
to use non-linear and/or fuzzy models to predict CEP instead
of linear models or regression analysis9. Herein, unpredictable
shifts in any effectual factor probably caused failures in pre-
dictions’ success.

RMSE 14.25 14.09 13.03 10.16 7.99 6.66 6.98

RRMSE 10.40 10.28 9.51 7.41 5.83 4.86 5.09

SDR 1.21 1.18 1.10 0.86 0.68 0.57 0.59

CV 10.43 10.19 9.49 7.43 5.84 4.87 5.11

PC 0.43 0.42 0.51 0.64 0.76 0.84 0.82

PI 7.27 7.23 6.29 4.53 3.30 2.65 2.79

ME 0.28 2.24 1.42 0.60 0.53 0.41 0.07

RAE 0.01 0.01 0.01 0.01 0.00 0.00 0.00

MRAE 0.01 0.01 0.01 0.01 0.01 0.00 0.00

MAPE 8.03 7.71 7.31 5.46 4.70 3.93 3.38

MAD 10.26 9.86 9.35 6.93 6.02 5.10 4.13

R2 0.50 0.46 0.25 0.25 0.54 0.68 0.65

Adj-R2 0.47 0.44 0.23 0.24 0.53 0.67 0.64

AIC 684.14 681.26 661.21 597.55 535.93 489.31 501.40

CAIC 684.23 681.36 661.31 597.65 536.03 489.41 501.50

Table 5 - Model goodness of fit results of LPR Models.

Model goodness of fit criterion PER20 PER30 PER40 PER60 PER80 PER100 PER150

PERi, partial-egg record on ith d; RMSE, root mean square error; RRMSE, relative root mean square error; SDR, standard deviation ratio; CV, coefficient of varia-
tion; PC, Pearson’s correlation coefficients; PI, performance index; ME, mean error; RAE, relative approximation error; MRAE,  mean relative approximation error;
MAPE, mean absolute percentage error; MAD, mean absolute deviation; R2, coefficient of determination; Adj-R2, adjusted coefficient of determination; AIC, Akaike’s
information criterion; CAIC, corrected Akaike’s information criterion.

PER20 -1.41 0.38 0.27 0.54 0.95 -0.26 0.28 1.06 -0.95 2.47 132.07

PER30 -0.13 0.36 0.41 -1.01 1.36 0.02 0.32 0.57 0.09 1.39 135.37

PER40 0.44 0.36 -0.48 1.32 1.53 0.27 0.30 0.50 -0.73 1.61 133.28

PER60 0.78 0.29 0.40 -2.53 1.29 0.60 0.14 0.82 0.53 1.28 129.01

PER80 0.19 0.32 -0.86 3.25 0.42 -0.35 0.09 0.24 0.28 1.55 116.27

PER100 0.91 0.17 0.50 -1.41 0.71 1.97 0.01 0.46 -0.49 1.42 116.45

PER150 -1.41 0.27 0.11 0.39 0.32 1.29 -0.02 0.27 0.30 1.03 126.94

Table 4 - Parameters of LPR models used in egg production estimation.

Models β0
1 WFE1 AFE1 FTEW1 PERi β0

2 WFE2 AFE2 FTEW2 PERi Breakpoint

WFE, weight at first oviposition; AFE, age at first oviposition; FTEW, first ten egg weight; PERi, partial-egg record on ith d.
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As we mentioned above, the MARS is an algorithm that can cre-
ate a prophesying equation by determining breakpoints of the
independent variables that are important in the model. A to-
tal of seven models are created by considering partial-egg record
intervals including independent variables. In order to elimi-
nate the multi-collinearity problem that is frequently en-
countered in the MARS algorithms, the models were established
by taking the penalty as 2 (because of the negative and/or pos-
itive correlations among the included independent variables
that we mentioned above), and the adjusted R2 values were en-
sured to be close to each other with the generalized cross-val-
idation value. The model parameters created by the MARS al-
gorithms are given in Table 6.
In the PER20 model, (i.e. 20 d partial-egg record is independent
variable in the model), for example, when we assume that a quail
has twelve eggs during her 20 d partial-record, then it is expected
that a quail of 139.57 eggs during overall reproductive period,
approximately (CEP = 141–1.43 max (0, 13–12) = 139.57). For
another example, in the PER150 model (i.e. 150 d partial-egg
record is independent variable in this model), if a quail produced

lesser than 110 eggs till this time, it will presumably produce av-
eragely 1.12 lesser egg across the whole reproductive phase. Con-
trarily, if a quail produced more than 114 eggs during the same
period, it will be expected to produce averagely 1.06 more eggs
through the whole laying period.
The model goodness of fit merits of the seven MARS algorithms
are tabularized below (Table 7). When the MARS algorithms
model goodness fit criterions are compared with ones of the
linear regressions, it could be said that they are generally sim-
ilar to each other. It is thought that this is due to the absence
of the interaction terms in the models that use MARS algo-
rithms. It could be considered as an advantage that MARS al-
gorithms use fewer independent variables to predict overall egg
production. As in both previous prediction methods, it was also
determined that the RMSE, RRMSE, RAE, CV, MRAE, MAPE,
MAD, AIC, and CAIC model goodness fit criterions in the
MARS algorithm decreased with increasing partial-egg record
interval. It was determined that the explanation of the varia-
tion in CEP by the independent variables in the models increases
as the partial-egg record range widened.

RMSE 10.41 9.41 10.10 9.30 7.81 5.78 3.89

RRMSE 7.59 6.87 7.37 6.78 5.70 4.22 2.83

SDR 0.89 0.80 0.86 0.79 0.67 0.49 0.33

CV 7.62 6.89 7.40 6.81 5.72 4.23 2.85

PC 0.46 0.60 0.51 0.61 0.75 0.87 0.94

PI 5.19 4.30 4.88 4.21 3.26 2.26 1.46

ME 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RAE 0.01 0.01 0.01 0.01 0.00 0.00 0.00

MRAE 0.01 0.01 0.01 0.01 0.01 0.00 0.00

MAPE 5.52 5.26 5.24 4.92 4.28 3.37 2.05

MAD 6.78 6.53 6.41 6.06 5.37 4.48 2.78

R2 0.22 0.36 0.26 0.37 0.56 0.76 0.89

Adj-R2 0.22 0.36 0.26 0.37 0.56 0.76 0.89

AIC 599.67 573.97 592.03 570.88 526.25 449.22 347.44

CAIC 599.67 573.97 592.03 570.88 526.25 449.22 347.44

Table 7 - Model goodness of fit criterions of the MARS algorithms.

Model goodness of fit criterion PER20 PER30 PER40 PER60 PER80 PER100 PER150

PERi, partial-egg record on ith d; RMSE, root mean square error; RRMSE, relative root mean square error; SDR, standard deviation ratio; CV, coefficient of varia-
tion; PC, pearson’s correlation coefficients; PI, performance index; ME, mean error; RAE, relative approximation error; MRAE,  mean relative approximation error;
MAPE, mean absolute percentage error; MAD, mean absolute deviation; R2, coefficient of determination; Adj-R2, adjusted coefficient of determination; AIC, Akaike’s
information criterion; CAIC, corrected Akaike’s information criterion.

141.00 β0 127.00 β0 142.00 β0 123.00 β0 125.00 β0 128.00 β0 128.00 β0

-1.43 max(0, 13.00-PER20) +7.10 max(0, AFE-44.00) -1.23 max(0, 32.00-PER40) +1.33 max (0, PER60-36.00) -2.09 max (0, 53.00-PER80) +3.91 max (0, AFE-44.00) -1.12 max (0, 110.00-PER150)

-7.62 max(0, AFE- 45.00) +1.06 max (0, PER80-53.00) -4.02 max (0, AFE-45.00) +1.06 max (0, PER150-114.00)

-69.20 max(0, FTEW-11.30) -2.13 max (0, 70.00-PER100)

+84.00 max(0, FTEW-11.40) +1.25 max (0, PER100-77.00)

-121.00 max(0, FTEW-12.40)

+114.00 max(0, FTEW-12.50)

+1.05 max(0, PER30-12.00)

Table 6 - Parameters of the MARS algorithms used to predict CEP.

PER20 PER30 PER40 PER60 PER80 PER100 PER150

βj Term βj Term βj Term βj Term βj Term βj Term βj Term

WFE, weight at first oviposition; AFE, age at first oviposition; FTEW, first ten egg weight; PERi, partial-egg record on ith d.
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CONCLUSIONS 

When considering in general, the linear models (including some
early detectable variables and partial-egg records), which are
used to predict CEP, their achievements are aligned following
order: While the MARS algorithms and the LRM gave similar
results, both were more successful than the LPR models. This
method comparison is valid only for these CEP data. Only four
of the twenty-one different linear models using different par-
tial-egg records were successful to explain CEP. These were
MARS and LRM, when both used only 100 and 150 d partial-
egg records. It cannot be said that the prediction performances
of the LPR models, which are thought to be used as an alter-
native to the non-linear models to meet the expectations. More-
over, the existence of the above-mentioned possibility of
multi-collinearity between independent variables (AFE, WFE
and as a kind of egg weight FTEW) may have limited the suc-
cess of the MARS algorithms.
In conclusion, although the LRM without breakpoint, the LPR
with breakpoint in its dependent variable, and the MARS al-
gorithm with breakpoint in its independent variable are in-
sufficient to explain the variation of the CEP in earlier ages, they
can provide information to the breeders. As an inspiring sug-
gestion to further studies, both linear and non-linear models
can be comparatively investigated, and merits of the models can
be examined by taking account of weights of each egg in the
clutches.
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