
SUMMARY
Mastitis is the main disease in dairy farms worldwide. However, even after decades of research, mastitis is still a difficult disease
to control, because multiple environmental, management and pathogen factors are involved. This review aims to analyze the most
influential research works, in order to systematize the knowledge body on spatial analysis of mastitis. Our results indicate that
the main techniques found for spatial data analysis of mastitis using udder health indicators like somatic cell count (SCC) and
somatic cell score (SCS), are clustering, spatial correlation, and interpolation. We finally perceived that the lack of national data-
bases of dairy production for each country may be a limiting factor for conducting spatial epidemiology research at both the na-
tional and local levels.
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INTRODUCTION

Mastitis continues to be one of the most prevalent and chal-
lenging diseases in dairies. It consists of an inflammation of
udder tissues due to various causes, including physical dam-
age, chemical irritation, or infection caused by several
pathogens. Nowadays, mastitis control in dairy farms is still
difficult, although studies go back more than hundreds of
years. This is caused by the multifactorial nature of the dis-
ease and complex etiology1. The typical outcome of mastitis
is a reduction of milk yield and quality. Mastitis, since a com-
mon disease, causes a significant cost increase, mainly in terms
of decreased production2. This disease is a worldwide issue
because of the economic losses, which augmented more than
100 times in the last 40 years3.
The somatic cell count (SCC) per milliliter of milk, is a meas-
ure of both udder health and milk quality. It can be measured
for individual cows or in bulk milk from a herd. SCC data pro-
vide a more objective measure of udder health than veteri-
nary records of Clinical Mastitis (CM)4. SCC and bacterial
count are commonly known indicators for raw milk quality,
the last reflecting the milking and storing conditions5,6. The
log-transformed SCC—Somatic Cell Score [SCS = log2

(SCC/100,000) + 3]—follows a normal distribution, and has
been broadly used to diagnose udder inflammation and ex-
amine milk quality7. 

Several risk and protective factors associated with SCS have
been widely investigated in observational studies. Such fac-
tors include the influence of cow characteristics (breed, par-
ity); management factors (milking, udder hygiene, housing
system, calving conditions); environmental factors (climate),
and relations among these different aspects on the SCS lev-
el7. Others researchers have suggested dividing them into cow,
herd, management, and ecological level factors. Cow-level fac-
tors include breed, age, days in lactation, body condition score,
and hygiene of the cows. Herd-level factors comprise the type
of housing/bedding and herd size. Management factors in-
volve dry-cow treatment, farmer characteristics, SCC data col-
lection, milking equipment maintenance, buying-in and
quarantine of replacements, duration of the milking process,
fore-milking, milking mastitic cows first, and pre- and post-
milking teat-dipping. Ecological factors encompass the time
of year and geographical region8.
Several studies dealing with animal epidemiology, surveillance,
and contagious diseases monitoring have used spatial analysis,
being less common the application of these techniques to pro-
duction diseases like mastitis4. Near 200 microorganisms that cause
bovine mastitis have been identified. The list includes bacteria,
yeast and fungi; initial emphasis was focused at contagious bac-
teria, but a variety of opportunistic pathogens are frequently iden-
tified in modern dairy herds9. Therefore is complicated to spa-
tially follow the disease, since different niche and ways of trans-
mission. The main pathogens are classified as contagious
(Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma
bovis), environmental (Escherichia coli, Streptococcus spp.) and op-
portunistic (Non aureus staphylococci NAS like: Staphylococcus
chromogenes and Staphylococcus haemolyticus)10,11. 
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Spatial distribution of herds associated to environmental fac-
tors may play a role on mastitis development. Certain climate
conditions may trigger pathogen proliferation leading to an in-
crease on mastitis burden in dairy herds12. Spatial variation of
dairy equipment sharing may also foster the spreading of con-
tagious pathogens between farms13. Mastitis spatial effects could
also be explained by management practices in neighbouring
farms14. 
Therefore, information of space-time patterns of herd-level mas-
titis may be useful for designing surveillance programs against
contagious pathogens15. And, spatial epidemiological studies
could meaningfully assist to defining strategies for dairy herd
health improvement at regional or national level16. Thus, the
purpose of this work is to present a timely review, in order to,
define a benchmark on spatial analysis of mastitis, and to pro-
mote further research on it.

SPATIAL ANALYSIS

Veterinary spatial and temporal epidemiology emerged in the
late 1990s, after becoming very popular in the field of human
disease epidemiology. The advances accomplished in this
area of knowledge have facilitated not only the identification
and adjustment of thresholds of explaining variables but also
the development of new hypotheses regarding disease trans-
mission17.
During the last 30 years, Geographic Information Systems (GIS)
have provided researchers new tools for exploring and analyzing
health data18. Spatial analysis in a Geographic Information Sys-
tem (GIS) environment can be divided into three broad cat-
egories: visualization, exploration, and modeling. Frequently,
over a recurrent investigation method, these groups tend to su-
perpose19. They can be used to visualize the distribution of in-
fectious disease morbidity or mortality, identify hotspots or clus-
ters, and uncover relationships between spatiotemporal in-
fectious disease patterns and host or environmental charac-
teristics20. 
Spatial analysis is a useful analytical technique that helps iden-
tify the environmental risk for disease, detecting anomalies in
reporting and, monitoring spatiotemporal changes of disease4.
Spatial analysis can be applied to conduct four fundamental
tasks in epidemiology, 1) to improve the understanding of ge-
ographical patterns of morbidity and production, 2) to facil-
itate optimal allocation of resources for disease control, 3) to
determine the potential effectiveness of disease interventions,
and 4) to carry out studies of aetiological factors8. 
Table 1 shows the main studies about spatial analyses of ud-
der health and milk quality parameters. Herds can be georef-
erenced and included in a database with descriptive variables
such as spatial location, health concerns, and milk quality in-
dicators. All these variables can be considered to define areas
with similar spatial characteristics, and variables of interest can
be further explored to figure out hidden relationships between
them16,21. Such spatial epidemiological studies at country lev-
el can contribute to the development of regional policies, sup-
port strategies definition for improving dairy health16, and to
be a tool for directing the actions of industry and milk pro-
ducers6. 
Spatial epidemiology is attracting the interest of researchers
in veterinary preventive medicine. Regional dissimilarities such
as population heterogeneity, weather and terrain character-

istics, agricultural activities, health strategy, and the existence
of events (cattle fairs) could have a significant impact on dis-
ease transmission and control, whether for emerging or en-
demic disease22. Nowadays, data on spatial location of herds
or even individual animals is routinely recorded in many coun-
tries, providing an opportunity to conduct spatial analyses to
better understand the distribution and determinants of en-
demic diseases4.
A wide range of techniques are available to examine spatial pat-
terns of mastitis, from geostatistics to point process methods22.
Disease mapping, clustering, and ecological analysis are included
in spatial epidemiology, their use depend on specific require-
ments when evaluating ill-health etiology. There is usually a close
relationship between these branches18. 
Spatial modeling lets explore spatial patterns, quantify the ef-
fects of known disease risk factors, and then focus on unex-
plained spatial clustering23. Until last decade, the methods avail-
able dealt only with binary variables, and cluster detection for
diseases measured by continuous variables remained an un-
explored field. Nevertheless, several diseases can be better ap-
proached through continuous biological indicators22. To op-
timize spatial analysis, data should be analyzed using more than
one technique24.
Spatial analysis can be split into three different components:
visualization, exploration, and modeling19. Others divided spa-
tial epidemiology into disease mapping, geographic correla-
tion/regression studies, and clustering- disease clusters- sur-
veillance25,26, although it can be noted that such grouping may
be considered artificial or synthetic, since all these methods can
be applied on a interrelated-way on specific cases. Neverthe-
less, any classification may be useful for a better comprehen-
sion of existing methodologies and approaches. Our propos-
al for arranging spatial data analysis approaches can be found
in Figure 1. The next sections describe both the importance of
access to proper data and, the main studies according to pre-
dominant types of spatial analysis used for mastitis and milk-
related indicators.

SPATIAL ANALYSIS OF MILK
QUALITY AND MASTITIS

A small number of studies have been carried out aiming at spa-
tial analysis of milk quality indicators or mastitis. There are few
reported investigations of the spatial distribution of dairy pro-
duction indices8. Dragovich27 explored the spatial association
between rainfall, milk quotas, and quantity of milk collected
in Australia. Wood28 studied differences in milk production be-
tween geographical regions. Others analyzed geographical re-
gion as a variable in a number of large-scale studies using mas-
titis survey data29-31. One large-scale report from the United
Kingdom presented a visual analysis of dairy production at the
national level, including the number and location of herds, milk
production by geographic area and location of milk collection
and processing plants32. 
Most of them found that differences in natural resources, dairy
farm structures, and market features cause country regions to
apply diverse dairy management systems, which may be reflected
in various levels of technical performance33. 
Thus, the spatial analysis gives an opportunity to identify poor
udder health areas as targets for further, more in-depth, stud-
ies to identify reasons4.

Ruiz-Gil_490 imp_ok  31/05/22  10:02  Pagina 154



Ruiz-Gil et al. Large Animal Review 2022; 28: 153-160 155

2004 Sæbø & Genet. Sel. A genetic and Mapping 36 178 first lactation cows. Bayesian proportional hazards 
Frigessi Evol. spatial Bayesian Modeling model is used for modeling the time to first veterinary 

analysis of mastitis (Bayesian) treatment of clinical mastitis, including both genetic and 
resistance. Norway environmental covariates. Markov chain Monte Carlo 

methods (MCMC) were used for inference.

2005 Clements Prev. Vet. Bayesian spatio- Mapping June 2001-May 2002. 10 448 herds. Bayesian spatio-
et al. Med temporal modelling Modeling temporal modeling approach. Linear regression models were 

of national milk- (Bayesian) developed with spatially structured and unstructured random 
recording data of effects, a linear temporal trend random effect and 
seasonal-calving spatial-temporal interactions.
New Zealand herds

2006 Gay et al. J. Dairy Sci. Spatial and Mapping 1996-2000. 5 210 herds. Linear regression model for each 
temporal patterns Clustering year allowed adjustment for risk factors (breed, mean parity, 
of herd somatic cell (Space- amount of calvings per season, herd size, and farm altitude). 
score in France Time) Cluster detection based on Hellinger distance between spatial

distributions. Temporal ASCS patterns were explored using a
computation of correlations and comparisons between spatial
structures of different years.

2007 Gay et al. Vet. Res. A spatial hazard Mapping 2000, 34 142 dairy herds. The model allowed the 
model for cluster Clustering simultaneous estimation of the effects of known risk factors 
detection on (Space) and potential spatial clusters on SCS, and the mapping 
continuous of the estimated clusters and their range.
indicators of 
disease: application 
to SCS. France

2011 Wolff Geospat. Spatial patterns of Mapping September 2008-August 2009. 3 851 herds. Spatial 
et al. Health recorded mastitis distribution of CM odds was estimated from available records

incidence and SCC and compared with udder health based on measurements 
in Swedish dairy of SCC derived from official milk recording.
cows: implications 
for surveillance

2014 Mweu Prev. Vet. Spatiotemporal Mapping 1999-2009. To describe the spatiotemporal patterns of 
et al. Med patterns, annual Clustering infection with S. agalactiae in the population of Danish dairy 

baseline and (Space) herds and to estimate the annual herd-level baseline and 
movement-related movement-related incidence risks of S. agalactiae infection
incidence of S. over the 10-year period.
agalactiae infection 
in Danish dairy 
herds: 2000-2009

2016 Arede Acta Vet. A space-time Clustering June 2013-July 2014. Aproximately 3 500 herds measured.
et al. Scand. analysis of (Space) The objective was to investigate the evolution of spatial distribution 

Mycoplasma bovis: of M. bovis in dairy herd population. Repeated bulk tank milk 
Bulk tank milk samples were used as a proxy for the herd-level diagnosis. 
antibody screening Descriptive and spatial analyses were performed for the 4  
results from all screening rounds. Spatial globalclustering was evaluated 
Danish dairy herds through a modified K-function method, and local clusters 
in 2013-2014 by scan statistics.

2017 Läpple Eur. Rev. Sustainable Modeling The paper explored spatial effects in the adoption 
et al. Agric. Econ. technology of sustainable technologies using Bayesian spatial 

adoption: a spatial probit models.
analysis of the Irish 
Dairy Sector

2019 Giannak- Vet. Use of geographical Ecological 2 198 clinically healthy ewes, 111 farms. To recognize areas 
opoulos Microbiol. information system Niche potentially of high risk for increased frequency of subclinical 
et al. and ecological  Modeling mastitis in ewes. Analyzed by an Ecological Niche Model. 

niche modelling for 2 analyses: one for subclinical mastitis & one for subclinical 
predicting potential mastitis caused by slime-producing staphylococci. A model 
space distribution was constructed; sheep farms were divided into 2 clusters, 
of subclinical according to prevalence of subclinical mastitis: farms in the 
mastitis in ewes. upper three quartiles were used as occurrence points (‘infected 
Greece farms’); farms in the lower quartile were (pseudo)negative points.

2020 Dias et al. Semin. Spatial Mapping 2015. 566 milk cooling tanks, 6 792 data subsets from 2 209
Cienc. characterization of Clustering farmers. To identify SPC and SCC clusters in milk samples. 
Agrar. hygienic-sanitary  (Space) Spatial distribution maps of the quality indicators. Spatial 

indicators of dependence was evaluated by geostatistics, using the 
refrigerated raw milk ordinary kriging method for data interpolation.
from Rondônia state. 
Brazil

Table 1 - Main research papers related to spatial analysis of milk and mastitis indicators.

Year Authors Journal Title and Country
Spatial 

Methods
Analysis

Ruiz-Gil_490 imp_ok  31/05/22  10:02  Pagina 155



156 Mastitis spatial analysis, a Review

Data sources for analyzing milk
quality and mastitis
The first historic information about structured organization
of milk recording date back to France in 1907. Milk recording
spread to many countries as follows: USA 1883, Denmark 1895,
Germany 1897, France 1905, Australia 1909, Argentina 1911,
Canada 1911, South Africa 1917 and Spain 1933. A publication
of 1935 titled “Dairy Cow Recording in Different Countries”,
listed 34 countries practicing milk recording1. Mastitis stud-
ies are concentrated in places with a national and well-estab-
lished milk recording system, such as Nordic countries2,4,13,15,
New Zealand8, France7,22, and Brazil6,34.
As examples of the extent of these data record systems, the Live-
stock Improvement Corporation (LIC, Hamilton, New Zealand)
manages an extensive herd production-recording database
known as MINDA, containing information from approximately
98% of New Zealand’s 14,500 dairy farms, including milk-
recording data from approximately 85%8. 
All Swedish veterinarians are required to report data, within
one week, on diseases to the national disease recording system
(NADRS). The report should include identification at the herd
or individual animal level, diagnosis, date, treatment’s detail,
recommended withdrawal period and veterinarian’s unique
identifier. 
The Swedish official milk recording system (SOMRS) was de-
veloped in the 70’s and combines production data for cattle with
a recording scheme that includes disease data based on records
made by veterinarians and also, to a lesser extent, directly by
the farmers. For herds participating in the SOMRS, veterinary
data are regularly transferred from NADRS to SOMRS and used

by farmers, herd advisors, and researchers4.
The Irish Farm Accountancy Data Network (FADN) data are
collected through the Irish National Farm Survey (NFS) data
collection team, established in 1972. A statistically representative
random sample of 1,100 farms (population of approximate-
ly 110,000 farms) is surveyed yearly. Farms are classified into
six farming systems. There are about 300 dairy farms in the NFS
each year from an approximate population of 17,000 dairy
farms14. 
The Danish Cattle Database contains information on bacte-
riological culture of bulk tank milk (BTM) samples collected
from the mandatory S. agalactiae surveillance scheme. Herd-
specific geo-coordinates and test date are specified. Cattle dai-
ly movement data is recorded on the Central Herd Register
(Danish Veterinary and Food Administration). Detailing an-
imal identification, movement date, identity and type (beef,
dairy, breeder, dealer, market, animal show, communal pasture,
and animal hospital) of source and destination locations13. Dan-
ish Cattle Database comprises other pathogens like M. bovis,
but the information available about herd locations lacks spa-
tial aggregation. Other countries data are from passive disease
surveillance plans and only have information about cases. Den-
mark’s information contained the entire target population.
However, the data presented few downsides in sampling with
an irregular time- frame and duration for each screening
round15.
A well-functioning system for recording cattle diseases can be
useful not only for herd management and breeding programs,
but also for improving food traceability, facilitating surveillance
of emerging diseases and improving food safety4.

Figure 1 - Classification of spatial analysis.
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Descriptive analysis
Maps are one of the most powerful tools to visually commu-
nicate data25. Data visualization is the first step in disclosing the
complex structure in data, not only to create interest and at-
tract the attention of the viewer but also to provide a way of
discovering the unexpected. Although plots of data and oth-
er graphical displays are among the fundamental tools for an-
alysts in general, for a spatial analyst, visualizing spatial data
usually means using a map18.
The majority of spatial analysis related to milk indicators and
mastitis are only descriptive, showing a visual analysis of dairy
production and/or its quality indicators21,32,35,36. However, it is
sometimes necessary to optimally estimate exposures in places
where there is not enough data, based on known exposure val-
ues from nearby geographic points; this is achieved through
the use of exposure models25. Gay et al.7,22 used a kernel smooth-
ing technique when mapped representations to explore spatial
and temporal patterns that required a spatial interpolation to
represent local farm density and annual milk somatic cell score
(ASCS) intensity. Clements et al.8 revealed the density of the
selected farms by a kernel smoothing technique using a
Gaussian function; the farm density was geographically non-
homogeneous. 
Aiming to visualize the spatial distribution of dairy cows in
Sweden, Wolf et al.4 produced a map using a Gaussian ker-
nel smoothed density algorithm (30 km fixed bandwidth);
choice of appropriate kernel function is less significant than
size of the bandwidth, larger bandwidths yielding smoother
surfaces37. To describe the distribution of clinical mastitis and
udder health (UD) score throughout Sweden, two surfaces
were constructed using Gaussian-kernel smoothing. The first
based in all herds CM-positive (case) over all herds CM-neg-
ative (control).  The second was based on number of cows
with a poor UD score on at least one test milking (numer-
ator) above the total number of cattle in each herd (de-
nominator). The geographical distribution of Sweden’s
dairy cows was strongly heterogeneous. Small areas contain
high proportions of the country’s dairy cows. Areas identi-
fied with poor udder health could be targets for further stud-
ies to find the causes. Authors mentioned the lack of qual-
ified cattle practitioners in such areas as one possible reason.
Therefore, the spatial distribution of cattle practitioners in
Sweden could be an interesting subject to study4. 
Another Nordic study13 applied kernel smoothing technique
to the yearly location of tank cases and non-cases of S. agalac-
tiae. Risk maps for each year were created by dividing the ker-
nel density surfaces for cases and the population summing case
and non-case densities. 

Clustering
A cluster could be defined as a geographically and temporal-
ly bound group of close values that is unlikely to have occurred
at random38. There are different types of clustering, including
general and specific18. Due to their contagious or point-
source nature, ill-health and diseases often cluster in time and/or
space; overlooking this characteristic can lead to a delay in con-
trolling or eradicating the health problem17. Therefore, the is-
sue of cluster detection is of major interest, since targeting pos-
sible causes for high disease concentration can assist in con-
trol and prevention. 
The main techniques used in cluster detection rely on scan
statistics. The principle is to compare the observed number

of cases inside a moving window to the expected number of
cases under some distribution assumptions (e.g., Poisson,
Bernoulli)22. 
Clustering studies on milk quality already allowed the identi-
fication of regional differences that can assist in the manage-
ment of herds6. In addition to potentially expediting control
efforts, cluster identification techniques enable the researcher
or healthcare official to identify and adjust for confounding fac-
tors and to generate new hypotheses regarding disease trans-
mission17. 
There are few spatial cluster detection methods dealing with
diseases quantified by continuous variables, like dairy cow sub-
clinical mastitis22. The identification of SCS spatial clusters could
display focused variation factors (e.g., climate accidents,
emerging strains or pathogens, or wide local use of deleteri-
ous bulls) that are too infrequent, with respect to the general
population, to be cleared up through large-scale spatial stud-
ies. The detection of SCS spatiotemporal clusters could help
local technicians supervise mastitis risk by detecting areas with
improved or worsened udder health. Controls and interven-
tions could be spatially and temporally targeted, from focused
epidemiological studies to the follow-up of management or en-
vironmental conditions. Performing a regression model before
the cluster detection would be a recommended procedure to
focus on unexplained clustering and to try to identify new risk
factors that are relevant on broader spatial scales7.
Cluster analyses are undoubtedly the most used for spatial as-
sessment of mastitis, milk and related data. Arede et al.15 stud-
ied four Danish dairy herd population cross-sectional screen-
ings of M. bovis in BTM (3700 herds) between June 2013-July
2014. They mapped spatial distribution evolution of M. bovis
in herds. Gay et al.7 studied a cohort of 15% of French dairy
herds (at least 20 cows) from 1996 to 2000 (5,210 herds) and
used an original cluster detection approach adapted to con-
tinuous variables to analyze the spatial and temporal patterns
of SCS in France. 
Both approaches could be useful for locals to manage masti-
tis risk more accurately and could be an efficient way to dy-
namically improve milk quality at the national level. Gay et al.22

also clustered herd SCS data through a method based on a spa-
tial hazard model. They employed a 2000-year dataset of SCS
for 34,142 French dairy herds and important SCS risk factors.
It included mean parity, percentage of winter and spring calv-
ings, and herd size. 
Dias et al.6 carried out a study on 566 milk cooling tanks of three
microregions of Rondônia state, Brazil. Data used were offi-
cial monthly analyses of Standard Plate Count (SPC) and SCC.
Geographical location, type (individual or collective), and the
number of producers who delivered milk to the collective tank
were also obtained.  Their objectives were to identify clusters
of Bacterial Count and CCS and to evaluate the influence of
time of year and tank type on the hygienic-sanitary quality in-
dicators of milk. 
The degree of dependence (DD) was calculated and categorized
into: weak ≤ 25%, moderate from 26% to 75%, and strong >
75%. Spatial analysis demonstrated weak spatial dependence
for SCC (DD = 22.02; r² = 0.73) and moderate for SPC (DD
= 25.93; r² = 0.17), at up to 100 and 15 km respectively, indi-
cating low accuracy in the identification of areas with common
characteristics for SCC and greater precision for SPC. Carvalho
and Souza36 observed moderate spatial dependence for SCC in
herds of this microregion.
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Spatial modeling
Spatial modeling combines both visualization and exploration
techniques with statistical analysis for disentangling what spa-
tial pattern is presented in the data i.e. clustered, dispersed, or
random19. Tobler’s often-cited first law of geography captures
the essence of spatial autocorrelation: “Everything is related to
everything else, but near things are more related than distant
things”. It means that spatial autocorrelation decreases as a func-
tion of the distance between the target observation and the re-
maining ones19.
Interpolating point samples of a continuous variable that dis-
tributes across space is another type of spatial modeling39. A
case of optimal interpolation is known as kriging, which can
be used to predict values and their standard errors indicating
where the interpolation is less reliable. Small population
studies are more susceptible to errors or local variations than
studies conducted over larger areas26. Kriging models take ad-
vantage of spatial dependence in the data to develop smooth
surfaces19. Mweu et al.13 employed ordinary kriging for inter-
polating herd hygienic indicators, obtained from risk values.
These were estimated using a logistic regression model for herds
locations, extracted from the year-specific mixed-effects logistic
regression models. These authors developed continuous risk
surfaces, specific for each year. Dias et al.6 estimated, using the
same method (ordinary kriging) the values of milk sanitary in-
dicators for the locations not sampled, without bias and with
minimal variance.

Spatial correlation and regression
Predicting health while exploring for other known risk factors
leads to suggestive evidence of statistical (and potentially causal)
associations. Regarding spatial analyses on mastitis and dairy
indicators, spatial correlation and regression analyses have fre-
quently been employed before clustering. For example, ASCS
was directly correlated to mean parity and spring calvings but
negatively correlated with the number of calvings in summer
and autumn, and also altitude. The breed factor was also high-
ly significant7. While the spatial correlation showed positive and
significant at 150 km distance with an approximated exponential
form.
Sæbø & Frigessi2 investigated the spatial patterns of mastitis in
Norway at district level and considered climatic, environmental,
herd features, and management factors. Adjacent veterinary dis-
tricts were assumed to be similar regarding environmental con-
ditions. They found a significant effect of environmental con-
ditions to mastitis. The lowest risk of disease was detected to
the southern part of the country.
In New Zealand, dairy farms were plotted on a map by using
their geographic coordinates in order to explore mean individual
cow somatic cell count (MICSCC), milk constituents and mean
milk yield with data spanning from June 2001 to May 2002 for
11,045 herds. A second phase of the study included the analy-
sis of sales questionnaires for 10,448 herds, gathering herd-lev-
el variables such as number of cows, heifers and calves, land area,
number of sets of milking cups in the dairy, date of onset of
calving, calving pattern (seasonal or year-round). Although they
found some spatial dependence for SCC, spatiotemporal in-
teractions were still small8.
In order to investigate the distribution of veterinary registered
cases of CM in Sweden, a cross-sectional study, covering a full
year (September 2008 - August 2009) of herd level annual pro-
duction data from SOMRS database was carried out. Data used

were udder disease score (geometric mean of individual cow’s
SCCs of last three months tests), the incidence rate of CM (cas-
es/100 by cow-years), CM cumulative incidence (number of
cows), average herd-size (in cow-years), and geometric mean
bulk milk SCC (BMSCC; cells/ml). Herd geographical location
was retrieved from the Swedish Board of Agriculture, 83% of
the herds (3,851) met the inclusion criterion. The study revealed
two scenarios 1)  areas with significantly lower odds for CM
but with a high proportion of cows with a poor udder health
score, suggesting an under-reporting of CM; and 2) areas with
significantly higher odds for CM despite a low proportion of
cows with a poor udder health score, suggesting mastitis over-
treatment4.
One of the most used models to predict the spatial distribu-
tion of living organisms is the so-called maximum entropy ap-
proach, or simply MaxEnt, which works with only presence data
and environmental variables datasets in order to characterize
spatial distribution of a certain species. Pixels with occurrence
records constitute the sample points and the features are en-
vironmental parameters. MaxEnt methodology utilizes both
continuous and categorical data40. An Ecological Niche Mod-
elling was used for studying ruminant mastitis and proved to
be effective in locating potentially increased risk areas for an
infection, as well as to identify environmental/ecological con-
ditions under which it would most likely develop12.
Aiming to detect potential areas of high risk for increased fre-
quency of subclinical mastitis, a maximum entropy modeling
using data obtained from 2198 ewes with clinically normal ud-
ders living in 111 sheep farms (with 35,925 ewes) across 13 ad-
ministrative regions of Greece was carried out. In each farm,
20 clinically healthy ewes were examined with conventional mi-
crobiological trials: California Mastitis Test (CMT) and Mi-
croscopic cell counting method. Staphylococcal strains were test-
ed for in-vitro slime production. Subclinical mastitis was con-
sidered positive when a bacteriologically positive milk sample
with concurrently increased CMT score (≥ ‘l’) plus neu-
trophil and lymphocyte proportion (≥ 65% of all leukocytes)
were detected. Subclinical mastitis was analyzed against sev-
eral explaining climatic and topographic variables at 1 km spa-
tial resolution. Distance between sheep farms was the most con-
tributing factor to the response variable, following altitude, max-
imum temperature of warmest month and the total precipi-
tation of driest month. Validation of results showed that more
than 76% of infected farms were located in areas predicted as
high risk for prevalence for clinical mastitis12.

CONCLUSIONS

The primary objective of this work is to discuss about masti-
tis as a topic for spatial research. Mastitis determination is close-
ly related to milk quality indicators. Depending upon the scale
or level of the study, the existence of local or national records
on dairy production will be mandatory to be able to explore
spatial patterns or causal relationships between explanatory vari-
ables against mastitis as a response variable, using proxies such
as SCC or SCS. Despite mastitis has been studied during sev-
eral years around the world, only few studies considering the
spatial variability are reported until now, ranging from envi-
ronmental, proximity, herd characteristics and management
studies, intrinsically linked to their spatial location. This dis-
ease must be analyzed at different spatiotemporal scales in or-
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der to find out hidden patterns and/or relationships that help
design herd management plans at the national, regional and
local levels. A number of reasons explain the scarcity of mas-
titis studies: 1) complex etiology and multifactorial behavior
of mastitis, 2) lack of official databases, especially in develop-
ing countries. Main techniques reported for mastitis spatial data
analysis include clustering, spatial correlation, interpolation,
and correlation. A national database system on dairy produc-
tion, for each country, will pave the way to be able to start do-
ing exploratory analyses regarding mastitis not only for im-
proving understanding of underlying factors of mastitis, but
for designing control measures applicable directly in herds.
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